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Abstract

We present a traveltime tomography method which exploits a greedy mesh refine-

ment algorithm to construct adaptive parametrizations with guarantees on model

resolution. The refinement strategy is implemented on an unstructured trigonal

mesh of cells, each with a constant gradient of slowness. We extend previous work

on this theme by adding a new class of refinement operations which produce higher

quality meshes with fewer poorly formed triangles. Zones of refinement are chosen

based on the properties of the diagonal of the model resolution matrix. The result-

ing mesh guarantees a well-posed inversion problem by construction. Our algorithm

is tested on a synthetic crosswell tomography problem with spatially variable an-

gular aperture and a region of negligible ray coverage; the results demonstrate the

advantages of adaptive parametrization in comparison to inversion using a regular

grid and a single regularization parameter. We also process a large multiwell seis-

mic dataset with irregular ray coverage collected at a shallow site with groundwater

contamination.
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1 Introduction

Seismic traveltime tomography provides a robust methodology for quantita-

tive reconstruction of P-wave velocities across multiple geological scales rang-

ing from deep mantle imaging (Bijwaard et al., 1998) to reservoir monitoring

applications (Harris et al., 1995) and environmental site characterization (Ma-

jer et al., 2000) (Daley et al., 2004). The application of traveltime tomography

algorithms to crosswell seismic datasets is often complicated by irregular ac-

quisition geometries, variable signal quality, and the underdetermined nature

of the resulting inverse problems. Large regions with high levels of seismic

attenuation are particularly difficult to effectively image; the loss of signal in

the attenuating region often prevents picking all of the acquired traces, re-

sulting in a ray geometries with significant spatial gaps. In addition to large

coverage gaps, differences in interwell spacing and S/N levels can produce sig-

nificant variations in angular aperture between well pairs. If multi-well profiles

are treated as a single dataset for the purposes of inversion, the choice of a

regular mesh and an appropriate regularization operator becomes difficult.

We are forced to either use a fine mesh and deal with a large number of un-

constrained parameters or to select a coarse mesh where individual cells are

well-constrained but spatial resolution is greatly decreased.

Several approaches exist for dealing with the case of sparse data or variations

in resolving power in tomographic imaging. One approach uses a fine dis-

cretization of regular pixels to generate an underdetermined inverse problem,

similar to the continuous case, and then adds information to this system in

the form of a spatially adaptive regularization scheme as implemented by Yi

et al. (2003) for the resistivity inversion problem. A second technique extrap-

olates the data set to full aperture and interpolates all measurements onto a

regular geometry thus generating a spatially uniform problem as is done by

Li and Nowack (2004). The problem in this case is to predict missing data, a
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non-trivial task but one which has seen significant advances through the de-

velopment of autoregressive signal analysis and optimal prediction-error filters

(Fomel and Claerbout, 2003).

We will consider a third approach, the problem of finding an optimal parametriza-

tion with spatially varying cell dimensions where mesh quality is judged by the

properties of the model resolution matrix. This strategy allows us to construct

a mesh adapted around irregular ray-coverage with formal constraints on how

different zones of the problem are resolved. Intuitively, regions of space with

higher ray densities and more complete angular coverage should allow exam-

ination of smaller features, assuming the fundamental wave-theoretic limita-

tions of imaging are honored. We will solve the problem of finding high quality

meshes for crosswell seismic experiments assuming straight ray-paths and a

consequently linear tomographic problem of the classical form,

G m = d (1)

where G is a ray-theoretic forward modelling operator determined by the

problem descretization, m is the property model, in this case slowness, and d

is the observed traveltime vector. Our traveltime tomography method exploits

a greedy mesh refinement algorithm to construct adaptive parametrizations

with guarantees on the properties of the model resolution matrix, R,

R = G−g G. (2)

where G−g is the natural generalized inverse of the forward operator. R can

be seen as a filter which shows how the imaging experiment, parametrization,

and the choice of G−g modify the true model (Menke, 1984), i.e.
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mest = R mtrue. (3)

Our forward modeling and refinement strategies are implemented on an un-

structured trigonal mesh of cells, each with a constant gradient of slowness.

We extend previous work on this theme by adding a new class of refinement

operations which produce higher quality meshes with fewer poorly formed tri-

angles. The algorithm is tested on both a synthetic reconstruction problem and

a large environmental field survey with irregular ray coverage due to localized

regions of high seismic attenuation.

2 Formulation of the Forward Problem on Unstructured Meshes

Unstructured parameterizations, and trigonal meshes in particular, have sev-

eral advantages over traditional Cartesian meshes for solution of both the for-

ward and inverse problems. Unstructured meshes can be easily constructed to

conform to geological interfaces or surface topography. Accurately represent-

ing curved features using a regular Cartesian mesh requires spatial oversam-

pling which increases the cost of evaluating the forward problem. The location

of interfaces or mesh density can also be used to introduce prior structural

information directly into the parametrization of the inversion. Most impor-

tantly, unstructured meshes can be adapted to increase mesh quality where

the quality metric might include ray coverage, model resolution, or posteri-

ori covariance. From the perspective of the forward problem, unstructured

meshes have an advantage over regular Cartesian representations when large

spatial regions are homogeneous. In this situation, a small number of irregular

cells can be used to effectively represent an area requiring a larger number of

regular pixels. In cases where the density of unstructured control nodes/cells

approaches that of a regular Cartesian mesh, the higher book-keeping costs of
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irregular grids makes them less attractive for the forward computation.

Several parameterization methods have been considered for use in adaptive to-

mography including cubic-B splines (Michelini, 1993) (Michelini, 1995), Voronoi

polygons (Bohm et al., 2000) (Bohm and Vesnaver, 1999), lumped Cartesian

blocks (Bijwaard et al., 1998), and trigonal meshes with constant velocity

(Curtis and Snieder, 1997) or squared slowness interpolating functions (Cox,

2004). Cubic-B spline representations have desirable second-order continu-

ity properties but require numerical integration procedures to calculate the

Frechet derivatives when solving the inverse problem. Voronoi polygons are

attractive for adaptive inversion due to their compact support but greatly

complicate ray-tracing due to their variable number of cell edges. Cartesian

meshes with cells grouped for the inversion process are computationally ef-

ficient for certain types of adaptation but lack the flexibility of truly un-

structured parametrizations, particularly for interface representation. Trigonal

meshes are a useful building block for tomographic imaging due to their natu-

ral relationship to constant gradient interpolating functions. Since a gradient

can be uniquely defined by three points, trigonal meshes enable local linear

interpolation with continuity at cell boundaries. Although we use straight rays

for our formulation, semi-analytic closed forms exist for curved ray paths in

trigonal cells with constant gradients in velocity (White, 1989) or the square

of slowness (Červený, 1987).

For our parametrization we have chosen to use a trigonal mesh where slowness

varies linearly within each cell. In this case, the traveltime path integral and

Frechet derivative contributions can be evaluated in closed form. Figure 1

illustrates the key parameters for a triangular cell and the associated control

points. The slowness at any point r can be written as a summation of N linear

basis functions operating on sj, the slowness value corresponding to control

node j,
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s(r) =
N∑

j=1

sjφj(r), (4)

where φj can be calculated using

φj(r) =


[(r−r1)×(r2−r1)]·e3

[(rj−r1)×(r2−r1)]·e3
, if r is inside of a triangle with vertex rj

0, otherwise,

(5)

where rj is the position vector of node j and r1 and r2 are the position vectors

of the other two nodes of the triangle containing r and rj. e3 is the unit vector

normal to the plane. Given our slowness interpolation function (equation 4),

we can write the tomographic matrix in terms of the ith ray and the jth nodal

basis function as,

Gij =
∫
ray i

φj dl, (6)

where for our case the raypath is known a priori as a straight segment con-

necting source and receiver. For this class of basis functions, the elements of

Gij have a simple analytical expression of the form,

Gij =
∑

cells that share node rj

and are intersected by ray i

‖ra − rb‖
[(ra+rb

2
− r1)× (r2 − r1)] · e3

[(rj − r1)× (r2 − r1)] · e3

(7)

where ra and rb are the intersections of the raypath with the cell edges.
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2.1 Formulation Of The Inverse Problem

If the trigonal mesh geometry is known a priori, we may apply the standard

techniques of linear inverse theory to obtain a model estimate. In our case we

use a least-squares method with an anisotropic first derivative regularization

scheme. Using the definition of Gij from equation 7 we seek the least-squares

solution of



G

λxDx

λzDz


m =



d

0

0


(8)

which has the normal equation

m = (GTG + λ2
xD

T
x Dx + λ2

zD
T
z Dz)

−1GTd, (9)

where m is the slowness model, d is the travel time vector and Dx and Dx are

non-uniform directional first derivative operators. The coefficients λx and λz

are regularization parameters in the appropriate direction. A useful secondary

variable to consider is the ratio of the x and z regularization parameters,

rλ = λx

λz
, which takes on large values as we bias m towards layered models.

Dx and Dx are defined in terms of a mixed notation where subscript k refers

to trigonal cells while j refers to control nodes. The derivative contribution

for the jth node and the kth cell is then,

Dxkj =
[e1 × (r2 − r1)] · e3

[(rj − r1)× (r2 − r1)] · e3

(10)
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Dzkj =
[e2 × (r2 − r1)] · e3

[(rj − r1)× (r2 − r1)] · e3

(11)

where e and r are the appropriate unit normal and nodal location vectors

respectively,

e1 =

[
1 0 0

]T

(12)

e2 =

[
0 1 0

]T

(13)

e3 =

[
0 0 1

]T

(14)

r =

[
x z 0

]T

(15)

We use the iterative LSQR algorithm of Paige and Saunders (1982) to solve

equation 8. Constant values for λx and λz are typically chosen by observation

since a prior estimate of data variance is often unavailable. Application of

the generalized cross validation (GCV) technique (Wahba, 1990) (Aster et al.,

2005) for determination of λ values was attempted for several datasets but

failed due to the existence of very broad minima on the GCV curve. When

applying the GCV method, we assumed a regularization anisotropy ratio, rλ,

and performed the 1-D search in terms of λz values with λx defined implicitly.

Additionally, we know that one component of error within our experimental

traveltime data consists of correlated non-Gaussian noise due to picking bias.

Since errors of this type break GCVs assumption of Gaussian noise with a

fixed variance, this correlated noise is interpreted as a model component and

the resulting GCV value for λ is often unrealistically low.
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3 Metrics For Tomographic Mesh Refinement

The goal of tomographic mesh adaptation is to generate a parametrization

with some stipulated property, possibly fulfilling or optimizing a formal quality

measure of the resulting inverse problem such as eigenspectrum metrics (Curtis

and Snieder, 1997), properties of the model resolution matrix (Cox, 2004), or

null-space power (Bohm and Vesnaver, 1999). For larger problems, heuristic

measures of mesh quality including cellular hit count (Bijwaard et al., 1998)

are often used. In some cases, mesh adaptation is instead driven by structural

goals such as the effective representation of geological zones with high velocity

gradients (Bohm et al., 2000).

Bohm and Vesnaver (1999) advocate an interpretive approach to mesh adap-

tation guided by prior knowledge of structure and graphical measures of null

space properties. However, the inclusion of manual interpretation steps is both

time consuming for large problems and generates a human bias for the geom-

etry in the final mesh. They parametrize the forward and inverse problem in

terms of constant velocity Voronoi cells.

Curtis and Snieder (1997) provide a compelling argument for using properties

related to problem eigenspectrum and null-space components instead of ray

density for determining mesh quality. They consider a 2 × 2 tomography

problem with constant slowness cells and the two parameterizations shown in

figure 2. If ray density, the number of rays passing through a given cell, is used

as a measure of mesh quality then parametrization (A) with hit counts of 2

in both cells is superior to parametrization (B). However, the tomographic

system resulting from parametrization (A) has a significant null-space since

any perturbation to S1 and S2 such that ∆S1 + ∆S2 = 0 has no effect on

either measured traveltime. Furthermore, either cell S1 or S2 can be subdivided

into an arbitrary number of horizontal layers without altering ray density. In

parametrization (B), each model parameter is uniquely resolved even though
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the ray density is lower than in (A).

Curtis and Snieder (1997) advocate the use of a normalized eigenspectrum

flatness measure, Ω, of the form,

Ω =
1

λ1

N∑
i=1

λi, (16)

where λi is the ith eigenvalue of operator matrix G. This metric can conve-

niently be computed in O(n2) time in comparison to the full SVD of G which

requires O(n3). However, the Ω-metric is intrinsically non-local since all spa-

tial information is encoded in the right eigenvectors for which the eigenvalue

spectrum only provides appropriate weighting. Non-local metrics cannot be

used for greedy refinement since we have no way of deciding where to add

control nodes. Curtis and Snieder (1997) side-step this problem by fixing the

number of unknowns a priori and executing an expensive global search over

all possible model parameterizations. We have found that Curtis’ approach,

while conceptually attractive, is difficult to apply to significant problems due

to the large number of iterations required for the global search to converge.

A related method proposed by Michelini (1993) uses the gradient of data misfit

with respect to perturbations in the parametrization to adapt the position of

velocity model control points. While Michelini’s method converges for simple

cases, it is easily trapped by local minimum in parametrization space and

additionally is not posed in terms of a mesh quality metric.

4 Mesh Refinement Algorithm

With an approach to tomographic reconstruction on arbitrary trigonal meshes

established, we will now consider the problem of automatically generating pa-

rameterizations with the appropriate resolution properties. We adopt a greedy
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algorithms for tomographic mesh generation, similar to the method presented

by Cox (2004), which sequentially add control vertices until the resolution

properties of the problem degrade below a threshold value. In contrast to

the search methodology of Curtis and Snieder (1997), the mesh generated

by greedy algorithms fulfills a quality constraint by construction but does not

guarantee a global minimum for a given quality metric. Refinement and coars-

ening techniques are two possible approaches to greedy mesh adaptation. The

refinement approach begins with a coarse mesh and iteratively add points un-

til a threshold criterion is met whereas coarsening techniques begin with a fine

mesh and remove low quality nodes until the quality metric is fulfilled. Our

technique is a combination of the two approaches. We start with a coarse mesh

and sequentially add nodes until no allowable refinements exist. We then prune

remaining nodes from the control point set which do not fulfill the resolution

criterion. The general algorithm is outlined by the following pseudo-code :

(1) Start with a coarse mesh enclosing the source/receiver footprint

(2) While valid refinements exist

(a) Compute Delaunay triangulation for the control point set

(b) Compute tomography kernel for the triangulation

(c) Compute model resolution matrix

(d) If even iteration

• Collect all edges where

· both endpoints satisfy the resolution criterion (Rii > Rc)

· the edge satisfy the minimum length requirement (L12 >

Lc)

• Choose n longest valid edges - add bisection points to the control

point set

(e) If odd iteration

• Collect triangles where

· all nodes satisfy the resolution criterion (Rii > Rc)
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· the triangle satisfies the minimum area requirement (A123 >

Ac)

• Choose n largest valid triangles - add centroids to the control

point set.

(3) While coarsening locations exist

(a) Compute Delaunay triangulation for the control point set

(b) Compute tomography kernel for the triangulation

(c) Compute model resolution matrix

(d) Scan nodes which do not fulfill the resolution criterion

(e) Remove m worst nodes

Figure 3 illustrates the core refinement loop. At any given step in the refine-

ment process we begin with a set of control points and compute the associated

trigonal mesh. The resolution properties of the mesh are evaluated and the

location for the next node is chosen using a rule set which we will outline. As

mentioned previously, this process is repeated until no valid update locations

are available.

One underlying component in the algorithm is the conversion between the set

of control points and their associated trigonal mesh. Since a given set of points

can have a large number of possible triangulations, we choose the Delaunay

triangulation as a unique mapping between the two structures. The Delaunay

triangulation, the dual of the Voronoi diagram, is straightforward to compute

and is guaranteed to be locally optimum with respect to minimum angle in

the mesh (de Berg et al., 1997).

We use a point-by-point estimate of the diagonal elements of R, as the cen-

tral component of our mesh quality metric. The goal in our mesh refinement

process is a parametrization where each point is as close as possible to a thresh-

old resolution value, Rc, with the hard constraint that Rii ≥ Rc. This metric

maximizes the spatial density of control points in a given region as long as all
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unknowns are resolved to within Rc. A possible improvement to our metric

might use the off-diagonal components of R to provide a threshold in terms

of locality.

Computing the mesh quality metric is the most time consuming component

of the adaptive refinement algorithm since R must be calculated. For prob-

lems of small dimensions, the dense SVD can be used for the calculation of

R. Following Menke (1984), we use the SVD factorization to decompose the

operator, G, into the matrix product,

G = U Λ VT = Up Λp VT
p (17)

where U is an N×N matrix of eigenvectors spanning the data space, Λ is the

diagonal M × N eigenvalue matrix, and V is the M ×M model eigenvector

matrix. The subscript p denotes that the SVD is truncated at the pth eigen-

value. In this case the truncated SVD model estimate is mest = Vp Λ−1
p UT

p d

and R can then be written as,

R = G−g G =
[
Vp Λ−1

p UT
p

] [
Up ΛpV

T
p

]
= Vp VT

p . (18)

The choice of the truncation point, p, is taken as a prior parameter; we tend

to choose a large p value to approximate the unregularized problem. Figure

4 provides a visual example of diag(R) for a set of crosswell ray paths and a

refined mesh with a quality constraint of Rc = 0.1.

The primary difference between our approach and the method outlined by Cox

(2004) is the fashion in which points are added during the refinement process.

At each iteration, the Cox algorithm adds control nodes at the centroid of

all triangles where the Rii values of the bounding nodes are greater than Rc.

Part A of figure 5 shows a single step of centroid refinement and the result of
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re-meshing with the additional control points. Within this refinement scheme

no points will ever be added to the boundary of the domain resulting in long

skinny triangles at the edge of the parametrization if too coarse a starting

grid is chosen. This effect is particularly problematic in crosswell scenarios

where a paucity of points at the domain boundary make the addition of prior

information from well logs difficult.

A second possible approach is to add points so as to bisect triangle edges where

both bounding nodes fulfill the Rc criterion. This approach allows control

nodes to be added on the domain boundary resulting in a parametrization

which is not biased towards refinement on the interior. Part B of figure 5

depicts an edge bisection refinement step. A failing of the edge bisection update

is the generation of preferential alignment of triangles in the end model.

We alternate between the two updating schemes at each iteration to produce

meshes without preferential point distribution or preferential triangle align-

ment. Figure 6 shows the result of centroid refinement (A), edge bisection

refinement (B), and the alternating scheme (C).

In addition to the Rc criterion, we also apply a size constraint to the point

update process. Triangles below a minimum area and edges below a minimum

length are not refined. The motivation for the size constraint is to avoid pa-

rameterizations which include many triangles far below the resolving power of

finite bandwidth field data. In this case, resolving power refers to the small-

est feature which can be successfully imaged using the full waveform and not

to the elements of R which are based on our ray-theoretic forward operator

G. Since our inversion scheme is based on ray-theory, an infinite bandwidth

approximation to the wave equation, no notion of wave-theoretic resolution

is present in the actual tomography scheme. In reality, spatial resolution in

traveltime transmission tomography is limited by both wavelength (λ) and

the experimental geometry and is variable within a given imaging plane. Al-
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though there is no closed form for the spatially varying wave-theoretic reso-

lution, Williamson and Worthington (1993) present a rough estimate of the

maximum resolving power (rmin) of transmission data using Rytov theory,

rmin ∼
√

L λ (19)

where L is the length of the transmission path. We typically choose minimum

edge lengths on the order of rmin/4. This limit is not intended to be a true

estimate of the wave-theoretic resolving power of the dataset, but merely a

rough lower bound to prevent refinement far below a reasonable length scale.

Another relevant aspect of the updating scheme is choosing the number of

control points (m) to add or remove at each iteration of refinement. For large

values of m, the refinement algorithm converges quickly with few required cal-

culations of diag(R). However, we have found that adding a moderate num-

ber of points at each iteration generates meshes with a slightly higher quality,

possibly because the sequential updating of R allows better choice of point

locations.

The coarsening stage is handled in a similar fashion to the mesh refinement.

If a given node has a Rii value less than Rc, that node is a candidate to be re-

moved during the coarsening phase. At each iteration of coarsening we remove

n poorly resolved nodes and then recompute the resolution metric. Since only

n nodes are removed at each step, some freedom exists as to which part of

the model nodes are initially removed from. We use a heuristic distance mea-

sure to preferentially cull points from the domain interior in early iterations,

however we have found that final mesh is generally insensitive to the choice of

removal order. After the mesh refinement and coarsening steps are complete,

the inversion algorithm described in section 2 is applied to generate the final

tomogram.

16



5 A Synthetic Application

Our refinement and inversion algorithm was first tested on a synthetic cross-

well dataset with an irregular source/receiver configuration. Panels (a) and

(b) of Figure 7 depict the true velocity model used for the synthetic test and

the ray path set respectively. The sparse ray geometry has a spatially vari-

able angular aperture, a zone with no transmitted arivals between 6 and 7

m depth, and several missing source and receiver locations. Synthetic trav-

eltime data were generated using a finely discretized regular mesh and the

same straight ray algorithm described in the previous sections. Gaussian noise

with a 2% magnitude was added to the synthetic traveltimes. Some features in

the true velocity model will not be visible in any tomogram given the sparse

source/receiver geometry. In these regions, particularly the coverage gap be-

tween 6 and 7 meters depth, the most we can hope for is a clean interpolation

between bounding slowness values.

Three tomograms were calculated for this dataset, one adaptive mesh inver-

sion and two regular mesh inversions with different ∆x and ∆z spacing values

(see figure 7). Panel (c) depicts the adaptive mesh generated by the algorithm

described previously. For the adaptive meshing phase, the resolution thresh-

old was set to a low value of 0.1 and a minimum edge length of 0.3 m was

used. The regular mesh inversions were performed on both fine and coarse pa-

rameterizations. Panel (e) depicts the tomogram for a 20× 75 sample regular

mesh while Panel (f) shows the equivalent results for a 10× 40 regular mesh.

The number of unknowns in the inversions were 744, 1500, and 400 for the

adaptive, fine regular, and coarse regular meshes respectively. For both regu-

lar mesh inversions, control points with no constraining rays were discarded.

When these control points were included in the inversion, the results were not

usable due to overwhelming image artifacts. As can be seen in panel (c) of

figure 7, zones with the densest ray coverage and the highest model resolu-
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tion values are represented with a fine parametrization while zones with poor

coverage are appropriately coarsened. As can be seen in the tomograms, the

adaptive scheme both gracefully handles the variations in ray coverage and

does a better job of recovering velocity boundaries. Improvements are visible

in the small high velocity lens at 3.5 m depth and the high velocity feature at

the bottom of the model.

Figure 8 shows ray-hit and diag(R) maps for the same three meshes. As can be

seen from panels (a) and (d), although the adaptive mesh fulfills our resolution

constraints, neither ray hits nor diag(R) values are uniform. Since the refine-

ment and sparsening operations are intrinsically discrete, the greedy scheme

does not have sufficient flexibility to generate parameterizations where the

quality metrics of triangles are smoothly distributed. One possible remedy to

this problem is the use of a second round of mesh optimization which operates

by perturbing nodal locations rather than adding or subtracting nodes.

6 Application To A Multi-offset Crosswell Profile

The dataset which drove the development of our adaptive tomography ap-

proach was a large multi-well crosswell seismic survey (Geller et al., 2002)

(Ajo-Franklin et al., 2002) acquired at the Pinellas DOE facility, a site with

confirmed dense non-aqueous phase liquid (DNAPL) contamination. The seis-

mic dataset was acquired as a sequential curtain of seven crosswell surveys

extending from a region of the site without free-phase contaminants to a zone

where DNAPLs were observed from borehole water sampling. By using a sen-

sitive 24 level hydrophone string and a small piezoelectric source, data was

acquired with a center frequency in excess of 5 kHz. One of our processing

goals was to jointly invert the entire dataset to allow more effective interpre-

tation of lateral velocity variations. Lateral well spacings varied between 2 and

6 m with vertical source and receiver spacings of either 0.125 or 0.25 m.
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The most challenging aspect of the Pinellas seismic dataset was a zone of

high seismic attenuation which prevented us from picking first arrivals in a

large region of the survey. Panel (A) of figure 9 shows the map of ray-paths

with sufficient S/N levels to pick. The resulting source/receiver geometry was

highly irregular with differences in both vertical coverage and angular aper-

ture between consecutive well pairs. Panels (B) and (C) of figure 9 show the

adaptive mesh generated by our algorithm and the resulting Vp tomogram.

In particular, the M34D-G18 profile had very limited angular aperture, large

regions without ray coverage, and low S/N in comparison to the M31D-G20

and G19-G20 sections. For the adaptive meshing step, the resolution threshold

was set to a relatively low value of 0.1 and a minimum edge length of 0.2 m

was used to prevent meshing below
√

L λ/4. In total, 4632 picks were used for

an inversion with 1419 control nodes.

Visible in panel (B) of Figure 9, our mesh generation algorithm avoided over-

parametrization of the low coverage region and provided a velocity estimate

in these zones consistent with data recorded above and below. In regions with

sufficient coverage, the mesh is refined down to our prespecified limits. Like

the synthetic examples, the values for the diag(R) metric are not uniform

across the tomogram with the worst values present in the lower regions with

poor angular aperture including the lower portions of the M34D-G18 and

G17-G16 sections. Since triangles are not aligned at profile boundaries, some

information from the adjacent wells is used in poor coverage regions; in the

case of G17-G16, the dense coverage on the boundary with G17 constrains

the region between -2 and -3 m elevation. The observed velocity variations for

this dataset were on the order of 200 m/s or approximately 11 % of the peak

velocity; the tomogram would probably benefit somewhat from the inclusion

of ray curvature.

19



7 Conclusion And Future Work

Our current adaptive tomography strategy is limited to relatively small prob-

lems with model and data dimensions of less than 104, more than sufficient for

the datasets acquired at small environmental sites but trivial in comparison

to large crosswell or VSP surveys with dimensions on the order of 106 or 3D

reflection surveys with dimensions upward of 108. This limitation is largely

due to our computation of the SVD of the operator matrix G at each of sev-

eral hundred refinement steps. Each SVD has an asymptotic cost of O(n3) in

both memory and computational time which makes scaling the algorithm to

larger problems difficult. This problem could be partially eliminated through

use of an iterative scheme for computing elements of R. Cox (2004) uses an

adaptation of the LSQR algorithm (Paige and Saunders, 1982) to calculate

components of R without having to explicitly form G while Fomel et al. (2002)

uses a similar modification to the traditional conjugate gradient method. In

both cases only the action of G and GT on m are required for implementa-

tion. Even with an iterative scheme in place, the cost of computing even a few

elements of R is still expensive for large problems. Another possible alterna-

tive is to develop a cheap mesh quality heuristic based on a combination of

ray density and local angular coverage. In this case, angular coverage might

provide a secondary constraint to help prevent excessive refinement in cases

like geometry (A) of figure 2.

A second limitation of the current scheme is our inability to include ray curva-

ture and therefore handle the full non-linear problem. While we have written

several codes capable of calculating curved raypaths on regular Cartesian grids,

the extension of these techniques to unstructured trigonal meshes is somewhat

more complex. We are in the process of developing raytracing schemes based

on the semi-analytic closed form for rays within trigonal cells with a constant

gradient of slowness squared (Červený, 1987) and the wavefront construction
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algorithm (Vinje et al., 1993). Even after completion of a curved ray tracer

for trigonal or tetrahedral meshes, we still must contend with the problem

of handling mesh adaptation at each gradient step in the non-linear prob-

lem; modification of ray geometry during convergence will force some iterative

re-adaptation of the mesh. One approach to solving this problem would be

to only add a small number of additional control nodes at each step in the

non-linear problem, a strategy analogous to methods which successively relax

model-space constraints such as the dynamic smoothing technique proposed

by Nemeth et al. (1997).

A more fundamental limitation of the described approach is our reliance on ray

theory, an infinite bandwdith aproximation, within the reconstruction process.

As mentioned previously, the resolution criterion, Rc, used in our refinement

algorithm is only a measure of how well parameters are resolved within a

ray-theoretic context. If the same type of technique were developed within the

framework of wavefield tomography, R would include the effects of finite band-

width field data and correspond to a physical resolution rather than simply

being a measure of the inverse problem quality.

In summary, we have succeeded in developing an adaptive traveltime tomog-

raphy algorithm based on greedy mesh refinement. Our formulation provides

formal guarantees on model resolution and can be easily applied to problems

with irregular source/receiver geometries. We have improved upon previous

adaptation schemes by incorporating a new mesh refinement operator which

reduces the number of high aspect ratio triangles. Using a complex synthetic

test case, we have demonstrated that our algorithm both improves tomogram

quality in regions of good coverage and provides consistent property estimates

in regions with insufficient data. We have also successfully inverted a substan-

tial field dataset, the Pinellas M31D-G16 multi-offset crosswell seismic profile.
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Fig. 1. Illustration of the parameters used for the trigonal model relevant to equa-
tions 4, 5, 6, and 7.
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Fig. 2. Ray density vs. Resolution : This trivial example from Curtis and Snieder
(1997) demonstrates that a model with a higher cell-by-cell hit-count (A) can have
a larger null-space than a comparable model with a lower hit-count (B).
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the associated model resolution metric, add another control point and repeat this
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Fig. 4. An example of mesh refinement and the corresponding values for diag(R) :
The left most panel shows a crosswell S/R/ geometry and a set of raypaths. The
center panel shows one possible refined mesh with the right panel providing a map
of diag(R) for this particular parametrization.
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Fig. 5. Two control point updating schemes. (A) centroid refinement, of Cox (2004)
(B) edge bisection refinement.
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A B C
Fig. 6. Meshes generated by the three insertion algorithms. (A) centroid refinement
of Cox (2004), (B) edge bisection refinement, (C) alternating update method.
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locity model, (b) the ray paths used for the inversion, (c) the optimal mesh obtained
from our greedy updating scheme, (d) the tomogram calculated using mesh c, (e)
the tomogram calculated using a fine (20 × 75) regular mesh, (f) the tomogram
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